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Abstract We study lhe Kmnig-Penney model uilh incommensurate potentials m the 
presence of an electric Beld. Both localization and delocalization by electric Belds 
are observed, which “e results intermediate between those obtained in periodic and 
disordered ~ t e m s  under eleclric fields. By pertorming a multihctal analysis, we show 
that the wave functions for large fields are mullifractal. 

1. Introduction 

There has been much interest in periodic and disordered systems with a uniform 
electric field (Cota et a1 1985, 1987). In the presence of an electric field, periodic 
systems are known to have WannierStark ladders (WSL) (Wannier 1960, 1%2) and 
exponentially localized eigenfunctions when interband transitions are absent. As the 
interband transitions become appreciable, the discrete energy levels convert into res- 
onances in the continuum, resulting ultimately in an absolutely continuous spectrum. 
Recent experiments on periodic superlattices showed that large electric fields lead 
to delocalization if the system contains several wsu, as well as the field-induced 
localization (Voisin er a1 1988, Schneider a a1 1990). 

In the disordered chain of length N with 6-function potentials under an electric 
field, the electronic states are power-law localized for X > 1, where X is the ratio 
of the electrostatic energy F N  to the incident energy E (Soukouli et a1 1983). It 
was proved that there exists a transition from power-law localized states to extended 
ones for large fields (Delyon a ul 1984). 

On the other hand, little has been reported for either periodic or disordered 
systems (Kim 1991, Oh et ul 1992). One-dimensional (ID) incommensurate systems 
which are intermediate between periodic and disordered systems can have extended, 
localized or critical eigenstates (Sokoloff 1985). Luban and Luscombe (1986) studied 
a ID single-orbital tight-binding (m) model with incommensurate potentials under 
an electric field and found that all the eigenstates are factorially localized and the 
spectrum is a W ~ L  with non-uniform spacing. Weisz and Slutzky (1986) and Weisz 
(1988) examined the effect of a weak electric field on the localized states in a 1D 
TB model with incommensurate potentials, in order to explain non-linear conduction 
effects for the low-temperature semiconducting phase of aystals containing charge- 
density waves. Note that interband transitions were not considered in the models. It is 
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the purpose of this paper to examine the localization properties of the electronic states 
and the characteristics of the field-induced extended states in a 1D incommensurate 
system under an electric field, by considering interband transitions. 

2. The model and the methods 

We consider the Kronig-Penney (U) model 

(1) 1 N d2 
H $ ( z )  = --+ V , 6 ( x -  n) - Fx $(x) = E$(+)  [ dx* n=1 

where h 2 / 2 m  = 1, e = 1, F is the electric field strength, V, = V, + V, cos(27rpn) 
with irrational p, and the lattice constant is taken to be. 1. The irrationality of ,!3 
makes the field-free potential incommensurate with the underlying lattice. We take 
/ j  = fi - 2, as used by Azbel and Rubinstein (1983). In the absence of an electric 
field, localized states can be found more easily in an array of potential wells (Ryu 
1988) than in that of potential barriers (Azbel and Rubinstein 1983). We choose 
V, = -6 and V, = 3. 

When a wave is incident from the right with E < 0, the wave is completely 
reflected and the transmission coefficient, which is the quantity of experimental in- 
terest, goes to zero (Cota ei a1 1987). We consider an electron incident from the 
left with positive energy. The electron can tunnel from one band to another in KP 
models for sufficiently long lengths or sufficiently strong electric fields. We use the 
ladder approximation that replaces the ramp potential by a step function. %king the 
cell solutions as plane waves instead of Airy functions, equation (1) can be exactly 
mapped to the second-order difference equation (Soukoulis er a1 1983) 

S n @ , + i  + Xn-i@,-i - En@n = 0 (2) 

where $, = +(z = n) and E, = V, + X n - i Y n - l  + X,Y,. And here X ,  = 
k,,/sin k,, x, = cosk, and k, = [ E + F ( n + 0 . 5 ) ] ' / 2 .  Equation (2) hasasimilar 
form to the familiar TB model but has all the band-structure information contained 
in equation (1). We note that E, and X,, are non-linear functions of E. 

To examine the localization properties, we study the transmission coefficient T ,  
wave functions and the density of states (DOS). We calculate T by using the recur- 
sion relations (Stone er ai 1981) obtained from the transfer matrix of equation (2), 
wave functions using periodic boundary conditions, and the DOS using the negative- 
eigenvalue theorem (Dean 1972) or nodecounting method (Lambert 1984). 

7% study the fluctuations of the wave functions, we use multifraaal analysis (MFA) 
(Halscy r! a1 1986). Recently, MFA has been used to investigate the multifractalities 
in the fluctuating regimes of localized wave functions in disordered systems (Mato 
and Car0 1987, Pietronero a ul 1987) and those of wave functions in quasiperiodic 
systems (Evangelou 1987, Roman 1987, Huamoto and Kohmoto 1989). It has also 
been used lo examine the characteristics of the wave function at the mobility edge 
in three-dimensional disordered systems (Evangelou 1990, Schreibcr and Grussbach 
1991). We compute r ( q )  which obeys 

r (q )  = l im 1-0 In  Z(q, 1 ) /  In 1 (3) 
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where Z(q, I )  = CL’: Fp and 1 = L / N .  The lattice is covered with consecutive 
boxes of size L and Pi is the probability of linding the electron within the ith box. 
We use the normalized wave functions and find ~ ( q )  by plotting In Z(q, 1 )  against 
In L for a fixed q. Using the relations 

dT(q)/dq = a f(a) = P - ~ ( q )  (4) 

we can obtain the multifractal spectrum characterized by a continuous set of scaling 
indices a and the h c t a l  dimensions f (a) .  

For an extended wave function, one can obtain a single point f = a = 1, 
which means the absence of multifractal features in the wave function. When a wave 
function is localized, if L is larger than the localization length, the f ( a )  spectrum 
consists of two points, one being f(0) = 0 and the other f(w) = 1. For a critical 
(self-similar or chaotic) wave function, one gets a continuous f ( a )  spectrum. But a 
chaotic wave function shows quite different shapes in each scale and does not yield 
an f ( a )  spectrum independent of L (Tokihiro’ 1989). Thus, the multifractality of a 
wave function is confirmed by the L-independent f ( a )  spectrum. 

3. Results and discussion 

Figure I(a) shows the DOS and - ln(T)/N for the first and the second main bands. 
In the absence of an electric field, -ln(T)/” is equal to the inverse localization 
length. When F = 0, the first band is localized and the second one consisting of five 
subbands is extended. As one can see from Zener’s tilted band picture, the states 
lying near band edges are most easily influenced by electric fields. As F increases, 
discrete levels occur near band (main bands and subbands) edges and the band widths 
increase by FN, as shown in figure I(b). But the interband tunnellings between the 
subbands make it diffcult to see a WsL in each main band. For large fields, there 
are no clear gaps or discrete levels, but resonances in the continuum as shown in 
figure I(c). The positions of resonances correspond exactly to those of the peaks of 
T. 

Figure 2(a) shows that the localized states in the first band are more strongly 
localized by electric fields when interband tunnellings are negligible. Luban and 
Luscombe (1986) showed that this field-enhanced localization is the factorial one. 
The field-enhanced localization is also found in a disordered system with &function 
potentials. When the interband transitions become appreciable, T shows a power-law 
decay as shown in figure 2(h). For large fields, the states become extended. Next, we 
examine the influence of electric fields on the extended states in the second band. 
fW small fields, the states become power-law localized for large N as shown in 
figure 3. The noticeable jumps seen in figure 3 are due to interband tunnellings The 
plateaus and the slopes correspond exactly to bands and gaps that the electron moves 
through, respectively. This shows that Zener’s tilted band picture is a good guide to 
understanding the transport properties of the electrified chains. For large fields, the 
states also become extended. 

We have performed an MFA to study the characteristics of the extended wave 
functions for large fields. Figure 4 shows the log-log plots of Z( q,  I )  against the box 
size L. It is a very good straight-line fit to the plot for a positive but not large q. This 
procedure is not so accurate for negative 4 as for positive q, since the smallest part 
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Figure 4. The log-log plots of Z(p, 1 )  against L. The slopes give r(q). 

of the amplitudes of the wave function makes the largest contribution to Z( q ,  1 )  for 
negative values of q. The good fit of the straight tine for all values of L considered 
means that + ( q ) ,  the slope of the line, is independent of L. me L-independence of 
T ( q )  confirms that of the f(a) spectrum, which means that the wave function shows 
multifractal properties at all length scales. One may Iind continuous f ( a )  spectra 
for certain extended states (Siebesma and Pietronero 1987, Johansson and Riklund 
1990). But the spectra are maintained only up to critical lengths. In such cases, the 
slopes of plots change significantly at the critical lengths. 
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F&um 5. ?he f l a )  sDecuum for a Beld-induced mended wave function. We have - .. , . 
R=3.23111, F = l O a n d  N = 6 0 0 0 .  

Flgure 6 me amplitudes squared of the wave function at k = 3.231 11 and F = 10. 
?he amplitudes 4uared of smaller subpaitems are averaged and the wave function is 
not normalized. 

In figure 5, the continuous f (01 )  spectrum proves the multifractality of the field- 
induced extended wve function shown in figure 6. At q = 0,  we obtain the Hausdorff 
dimension f ( a ( q  = 0)) = 1,  the dimension of the support of the measure. From 
these results, we conctude that the field-induced extended states are not the extended 
ones in the usual sense. We have obtained a single point f = 01 = 1 for the w v e  
function at the incident momentum k = 3.231 11 in the absence of an electric field. 
We have performed an MFA on a field-induced extended wave function in a periodic 
system under an electric field and obtained a similar curve to that in figure 5. These 
indicate that this multifractality is not due to the incommensurability of the system 
but due to electric fields. 

Finally, we discuss the effect of the ladder approximation on the multifractal 
feature of the field-induced extended wave function. The ladder approximation has 
been used successfully in studying the localization properties in electrified chains with 
periodic and disordered potentials (Nagai and Kondo 1980, Cota d nf 1985) and is 
expected to affect mainly the short-range behaviour of the wve function (Soukoulis 
el ai 1983). Thus it may affect the multifractality at small length scales. But as 
one can see from the L-independence of the f ( a )  spectrum, the multifractality is 
maintained at all length scales. Therefore, the multifractality is not an unexpected 
result, in view of the approximation used, and the approximation is considered not 
to yield any significant change in our results. 
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4. Summary 

In conclusion, we have studied the influence of an el&c field on the electronic 
states in a ID incommensurate bytem. We found both localization and delocalization 
by electric fields. Note that the former has been found in periodic systems and the 
latter in disordered systems. As F increases, exponentially localized states in the first 
band change into power-law localized ones via the field-enhanced localized ones. The 
states become extended for large fields. The field-free extended states in the second 
band become power-law localized for small fields and extended for large fields. We 
have shown that the field-induced extended wave functions are multifractal. We have 
also obtained similar results for the field-induced extended wave functions in a ID 
hierarchical system under an electric field (Oh et al 1992). Kim (1991) has studied 
the 'IB model, which is asymptotically equivalent to equation (1) for large N, with 
quasiperiodic potentials and found that critical and extended states coexist We have 
not found extended states in the usual sense under large fields. 

We need to study the electronic spectrum further. Delyon et al (1984) did not 
decide whether the continuous spectrum, which corresponds to extended states for 
large fields in a disordered system, is absolutely continuous or singular continuous. 
Thking into consideration our results for an MFA on the wave functions, it s e e m  that 
the spectrum for large fields is not absolutely continuous but is singular continuous. 
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